Creating a 3D Virtual City using ArcGIS

Eric Wittner
Product Engineer, 3D Analyst

Deepinder Deol
Product Engineer, 3D Analyst
Overview

- Planning for your Virtual City
- Creating and Importing 3D Data
- Authoring the 3D View
- Serving the 3D View
What is a 3D Virtual City?

• A GIS based representation of an urban environment

• What do people want to do with them?
 – Data visualization
 – Animation and simulation
 – Development/scenario planning
 – Emergency services
 – Threat analysis
 – Facilities and asset management
What is a 3D Virtual City?

- What is it composed of
 - Buildings
 - Other structures
 - Street furniture
 - Vegetation
 - Thematic data
Outline

• Planning
 – What is the intent
 – What features do you need
 – Data collection

• Creating and Importing 3D data
 – Basemap
 – Buildings
 – Street Furniture
 – Utilities
 – Vegetation
 – Thematic Data
Planning

• What is the intent of your virtual city
 – Realism
 – Interactivity
 – Analysis

• What features do you need
 – Your needs
 – Your wants
 – Your dreams
Planning

• Data Collection
 – What can you get?
 – Usable formats
 • GIS Data
 • 3D Models
 • CAD/BIM
 • Tabular data
 – What can you create?
 • Manual creation
 • Random generation
 • Programmatic creation
Creating and Importing Data

- Identifying your basemap layers
 - Aerial Imagery
 - Elevation Data
 - Transportation

http://resources.esri.com
Creating and Importing Data
Creating and Importing Data
Creating and Importing Data

- Creating Simple Buildings
 - Generate footprint
 - Image interpretation
 - Terrain interpretation
 - Heads-up digitization
 - Set a height attribute
 - Model from elevation data
 - Interpret from oblique photos
 - Manually set

- Create “Wedding Caked” Buildings
Creating and Importing Data
Creating and Importing Data
Creating and Importing Data

- **Importing Buildings – Model Placement**
 - Place a model as a graphic
 - Quick, easy, in 3D
 - Can’t be analyzed
 - Place a model as a point
 - Can be converted
 - Can be adjusted
 - Referencing in the native software
 - Import directly

Companies supplying photogrammetric data

Model complexity can impact performance
Creating and Importing Data

- Importing Buildings – Multipatch Conversion
 - What is a multipatch
 - Why convert to Multipatch?
 - Apply textures
 - Use in analysis
 - Performance
 - How to convert to Multipatch
 - Import 3D File
 - Layer 3D to Feature Class
 - Shapefile versus Geodatabase
Creating and Importing Data
Creating and Importing Data

Generating building textures programmatically

Material Properties File → Material Properties Table Generator → Building Properties Table Generator → Building Properties Table → Texture Images

Material Properties Table

Building Footprints Feature Class

Building Properties Table

Textures Textured Buildings Feature Class Generator
Demo
Creating and Importing Data

- **Street Furniture and other features**
 - Best represented by a 3D Symbol
 - Large set provided with Globe
 - Import from other formats
 - At what distance is it meaningful?
 - Use it, place it, where you need it.
 - Can be placed manually or randomly

KML can also be used to augment the view, and is supported as a special layer type, but does not provide analysis capabilities.
Creating and Importing Data

• **Vegetation**
 – Best represented by 3D Symbols
 • Cross Symbols
 • Complex Models
 – Can be placed manually or randomly
 • GP Tool Create Random Points
 – For appearance, rotate randomly
 • Calculate Field - INT(359 * Rnd)

More advanced options like Lenne3D
Demo
Outline: Authoring and Serving the 3D View

• Authoring the 3D View
 – Globe Data Caching
 – Texture Management
 – Using Multiple Representations
 – Demo

• Publishing to ArcGIS Server
 – Demo

• Questions
Globe Data Caching

• Mechanism for managing large amounts of data
• To improve display performance, ArcGlobe keeps a cache of tiles for each layer
• Two types of caches
 – Memory Cache
 • For immediate use
 – Disk Cache
 • Tiles are stored on disk for later use

• Tiles are swapped between disk cache and memory cache based on available resources and the current view
Memory Cache

- Refers to assigning an amount of the computer's RAM for use by ArcGlobe
- Memory can be assigned by data type
- Significant improvement in performance with proper settings
Disk Cache

- Tiles are stored on disk for fast retrieval
- Layer disk cache is temporary unless the ArcGlobe document or a layer file is saved
- Raster data has multiple levels of detail
- Feature data in ArcGlobe has only one level of detail
- Two methods of generating the cache:
 - **On-demand**: tiles are created and stored as needed
 - **Explicit**: cache all areas
 - **Partial**: generate cache for specified level of detail
 - **Full**: all levels of detail

- **Tip**: For best performance generate full caches for your 3D objects (buildings etc.)
Texture Management

• Textures on 3D objects can be memory intensive
• Data can take longer to display
• Navigation can be sluggish
• Performance degradation depends upon available physical memory as well as memory cache settings
• Three texture-management options are available:
 – Disable textures
 – Apply DXT compression
 – Downscale textures
Texture Management

- **Layer Properties → GlobeDisplay**

<table>
<thead>
<tr>
<th>Globe General</th>
<th>Source</th>
<th>Selection</th>
<th>Globe Display</th>
<th>Display</th>
<th>Symbology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating layers</td>
<td>See-through position (+ is above globe surface):</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td>Texturing mode:</td>
<td>Smooth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>Scale 3D symbols with distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rasterize feature layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convert symbol point unit to:</td>
<td>1</td>
<td>Meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendering</td>
<td>Enable rendering with compressed textures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material texture resolution:</td>
<td>Low</td>
<td>Full</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum transparency threshold:</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable material textures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only generate the level of detail specific to the current view during navigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **DXT compression**
- **Texture downscaling**
- **Disable textures**
Texture Management

Full Textures

Downscaled Textures

Disabled Textures
Using Multiple Representations

- Feature data in ArcGlobe has only one level of detail
- If you have a large number of features then
 - Create multiple representations of your data
 - Use GP tools in ArcToolbox (example: MultiPatch Footprint)
 - Use texture management techniques
 - Use different visibility ranges

Far (less detail) Near (more detail)
Using Multiple Representations

Example: Multiple representations for buildings

- Aggregated building footprints
- Individual building footprints
- Extruded footprints
- Buildings without textures
- Buildings with downscaled textures
- Buildings with full resolution textures
Using Multiple Representations

- Aggregated Footprints
- Individual Footprints
- Extruded Footprints
- Disabled Textures
- Downscaled Textures
- Full Textures
Using Multiple Representations

• For detailed information on which GP tools to use and how to optimize your ArcGlobe document please see:

Demo
Publishing to ArcGIS Server

- Publish the ArcGlobe document as a GlobeService
- Supports Local-area (LAN) and Web-based access
- Consume in ArcGIS Explorer, ArcGlobe, Globe Control
- All ArcGlobe supported data types can be served
- Supports Identify, Search and Find features
- Animation is also supported
Publishing to ArcGIS Server
Demo
Questions?
Related Technical Workshops

- 3D Analyst – An Introduction
- 3D Analyst - Visualization with ArcGlobe
- 3D Analyst Geoprocessing
- Getting Started with ArcGIS Server
- Animations in ArcGIS